The Transcription Factors Atf1 and Pcr1 Are Essential for Transcriptional Induction of the Extracellular Maltase Agl1 in Fission Yeast
نویسندگان
چکیده
The fission yeast Schizosaccharomyces pombe secretes the extracellular maltase Agl1, which hydrolyzes maltose into glucose, thereby utilizing maltose as a carbon source. Whether other maltases contribute to efficient utilization of maltose and how Agl1 expression is regulated in response to switching of carbon sources are unknown. In this study, we show that three other possible maltases and the maltose transporter Sut1 are not required for efficient utilization of maltose. Transcription of agl1 was induced when the carbon source was changed from glucose to maltose. This was dependent on Atf1 and Pcr1, which are highly conserved transcription factors that regulate stress-responsive genes in various stress conditions. Atf1 and Pcr1 generally bind the TGACGT motif as a heterodimer. The agl1 gene lacks the exact motif, but has many degenerate TGACGT motifs in its promoter and coding region. When the carbon source was switched from glucose to maltose, Atf1 and Pcr1 associated with the promoters and coding regions of agl1, fbp1, and gpx1, indicating that the Atf1-Pcr1 heteromer binds a variety of regions in its target genes to induce their transcription. In addition, the association of Mediator with these genes was dependent on Atf1 and Pcr1. These data indicate that Atf1 and Pcr1 induce the transcription of agl1, which allows efficient utilization of extracellular maltose.
منابع مشابه
Genomic Binding Profiling of the Fission Yeast Stress-Activated MAPK Sty1 and the bZIP Transcriptional Activator Atf1 in Response to H2O2
BACKGROUND The evolutionally conserved MAPK Sty1 and bZIP transcriptional activator Atf1 are known to play a pivotal role in response to the reactive oxygen species in S. pombe. However, it is unclear whether all of the H(2)O(2)-induced genes are directly regulated by the Sty1-Atf1 pathway and involved in growth fitness under H(2)O(2)-induced stress conditions. METHODOLOGY/PRINCIPAL FINDINGS ...
متن کاملAtf1-Pcr1-M26 complex links stress-activated MAPK and cAMP-dependent protein kinase pathways via chromatin remodeling of cgs2+.
Although co-ordinate interaction between different signal transduction pathways is essential for developmental decisions, interpathway connections are often obscured and difficult to identify due to cross-talk. Here signals from the fission yeast stress-activated MAPK Spc1 are shown to regulate Cgs2, a negative regulator of the cAMP-dependent protein kinase (protein kinase A) pathway. Pathway i...
متن کاملFission yeast global repressors regulate the specificity of chromatin alteration in response to distinct environmental stresses.
The specific induction of genes in response to distinct environmental stress is vital for all eukaryotes. To study the mechanisms that result in selective gene responses, we examined the role of the fission yeast Tup1 family repressors in chromatin regulation. We found that chromatin structure around a cAMP-responsive element (CRE)-like sequence in ade6-M26 that is bound by Atf1.Pcr1 transcript...
متن کاملTranscription factors Pcr1 and Atf1 have distinct roles in stress- and Sty1-dependent gene regulation.
The mitogen-activated protein kinase Sty1 is essential for the regulation of transcriptional responses that promote cell survival in response to different types of environmental stimuli in Schizosaccharomyces pombe. Upon stress activation, Sty1 reversibly accumulates in the nucleus, where it stimulates gene expression via the Atf1 transcription factor. The Atf1 protein forms a heterodimer with ...
متن کاملModification of tRNALysUUU by Elongator Is Essential for Efficient Translation of Stress mRNAs
The Elongator complex, including the histone acetyl transferase Sin3/Elp3, was isolated as an RNA polymerase II-interacting complex, and cells deficient in Elongator subunits display transcriptional defects. However, it has also been shown that Elongator mediates the modification of some tRNAs, modulating translation efficiency. We show here that the fission yeast Sin3/Elp3 is important for oxi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2013